Model of gamma frequency burst discharge generated by conditional backpropagation.
نویسندگان
چکیده
Pyramidal cells of the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus have been shown to produce oscillatory burst discharge in the gamma-frequency range (20-80 Hz) in response to constant depolarizing stimuli. Previous in vitro studies have shown that these bursts arise through a recurring spike backpropagation from soma to apical dendrites that is conditional on the frequency of action potential discharge ("conditional backpropagation"). Spike bursts are characterized by a progressive decrease in inter-spike intervals (ISIs), and an increase of dendritic spike duration and the amplitude of a somatic depolarizing afterpotential (DAP). The bursts are terminated when a high-frequency somatic spike doublet exceeds the dendritic spike refractory period, preventing spike backpropagation. We present a detailed multi-compartmental model of an ELL basilar pyramidal cell to simulate somatic and dendritic spike discharge and test the conditions necessary to produce a burst output. The model ionic channels are described by modified Hodgkin-Huxley equations and distributed over both soma and dendrites under the constraint of available immunocytochemical and electrophysiological data. The currents modeled are somatic and dendritic sodium and potassium involved in action potential generation, somatic and proximal apical dendritic persistent sodium, and K(V)3.3 and fast transient A-like potassium channels distributed over the entire model cell. The core model produces realistic somatic and dendritic spikes, differential spike refractory periods, and a somatic DAP. However, the core model does not produce oscillatory spike bursts with constant depolarizing stimuli. We find that a cumulative inactivation of potassium channels underlying dendritic spike repolarization is a necessary condition for the model to produce a sustained gamma-frequency burst pattern matching experimental results. This cumulative inactivation accounts for a frequency-dependent broadening of dendritic spikes and results in a conditional failure of backpropagation when the intraburst ISI exceeds dendritic spike refractory period, terminating the burst. These findings implicate ion channels involved in repolarizing dendritic spikes as being central to the process of conditional backpropagation and oscillatory burst discharge in this principal sensory output neuron of the ELL.
منابع مشابه
Oscillatory burst discharge generated through conditional backpropagation of dendritic spikes.
Gamma frequencies of burst discharge (>40 Hz) have become recognized in select cortical and non-cortical regions as being important in feature extraction, neural synchrony and oscillatory discharge. Pyramidal cells of the electrosensory lateral line lobe (ELL) of Apteronotus leptorhynchus generate burst discharge in relation to specific features of sensory input in vivo that resemble those reco...
متن کاملPersistent Na+ current modifies burst discharge by regulating conditional backpropagation of dendritic spikes.
The estimation and detection of stimuli by sensory neurons is affected by factors that govern a transition from tonic to burst mode and the frequency characteristics of burst output. Pyramidal cells in the electrosensory lobe of weakly electric fish generate spike bursts for the purpose of stimulus detection. Spike bursts are generated during repetitive discharge when a frequency-dependent broa...
متن کاملConditional spike backpropagation generates burst discharge in a sensory neuron.
Backpropagating dendritic Na(+) spikes generate a depolarizing afterpotential (DAP) at the soma of pyramidal cells in the electrosensory lateral line lobe (ELL) of weakly electric fish. Repetitive spike discharge is associated with a progressive depolarizing shift in somatic spike afterpotentials that eventually triggers a high-frequency spike doublet and subsequent burst afterhyperpolarization...
متن کاملPortfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization
Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...
متن کاملA dynamic dendritic refractory period regulates burst discharge in the electrosensory lobe of weakly electric fish.
Na+-dependent spikes initiate in the soma or axon hillock region and actively backpropagate into the dendritic arbor of many central neurons. Inward currents underlying spike discharge are offset by outward K+ currents that repolarize a spike and establish a refractory period to temporarily prevent spike discharge. We show in a sensory neuron that somatic and dendritic K+ channels differentiall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 86 4 شماره
صفحات -
تاریخ انتشار 2001